Math Lab: Exploring Inverses of Functions Graphically

1] Without a graphing calculator and using a pencil, accurately sketch each function on the same plot below labeling the coordinates of at least 3 points.

The notation $f^{-1}(x)$ means "the inverse of $f(x)$ " and does not change how you graph the function.

2] With your pencil, trace both graphs onto your tracing paper. Notice these images look to be symmetrical; fold your tracing paper along the line of symmetry. What is the equation for the line of symmetry?

3] List 3 coordinates on each graph in the tables below. What do you observe about the relationship between the x - and y - values on the function and its inverse?

4] Summarize

- Functions are inverses of each other if they have symmetry over the line \qquad .
- The inverse of a function switches the \qquad and \qquad coordinates; this means that the \qquad of the function becomes the \qquad of its inverse and the \qquad of the function becomes the \qquad of its inverse.

Determine if each pair of functions are inverses of each other by sketching a graph without a calculator.

Inverses - yes or no (circle one)
Explain:

6] $f(x)=\sqrt[3]{x-5}$
$g(x)=x^{3}+5$

Inverses - yes or no (circle one)
Explain:

7] $f(x)=\frac{1}{x+3}$ (dash in the V.A.) $g(x)=\frac{1}{x}-3($ dash in the H.A.)

Inverses - yes or no (circle one)
Explain:

Determine if each pair of functions are inverses of each other by testing 3 ordered pairs.
EXAMPLE: $f(x)=3 x-6$ and $g(x)=\frac{1}{3} x+2$

Take your y-values and use them as the new x-values in the other function.

> Inverses - yes or no (circle one)

Explain:

$\text { 8] } \begin{aligned} & f(x)=2 x-8 \\ & g(x)=\frac{1}{2} x+4 \\ & \mathrm{f}(\mathrm{x}) \end{aligned}$		$\mathrm{g}(\mathrm{x})$		$\text { 9] } \begin{gathered} f(x)=x^{2}+4 \\ g(x)=\sqrt{x-4} \\ f(\mathrm{x}) \end{gathered}$		$\mathrm{g}(\mathrm{x})$		$\begin{gathered} \text { 10] } f(x)=\|x\|+2 \\ g(x)=x-2 \\ \mathrm{f}(\mathrm{x}) \end{gathered}$			$\mathrm{g}(\mathrm{x})$	
x	y		x	y								

Inverses - yes or no (circle one)
Explain:

Inverses - yes or no (circle one)
Explain:

Inverses - yes or no (circle one)
Explain:

